Kenji Urai (浦井 健次)

Welcome to my personal website. Here you will find information about me. Graduate student (a 3nd year Doctors degree student) (CV2014: PDF)

◇ E-mail : urai.kenji[at]irl.sys.es.osaka-u.ac.jp

Research GatecrewwLinkedInGitHub

1) Research Interests 2) Publications 3) Education 4) Others 5) Links

Brief Bio

I was received the B.E. degrees in Engineering Science, from Osaka University in 2013. And I was received the M.E. degrees in Graduate School of Engineering Science, Dep. of Systems Innovation, from Osaka University in 2015. I am now a Ph.D. student of Osaka University. My research interests include humanoids, musculoskeletal robots, bio-inspired robots and communication robots.

Contact Information

Osaka University, Graduate School of Engineering Science, Dep. Of Systems innovation Intelligent Robotics Laboratory directed by Prof. Hiroshi Ishiguro. 1-3 Machikaneyama Toyonaka Osaka, 560-8531 Japan. TEL&FAX: +81-6-6850-6878

Research Interests

physical Human Robot Interaction (pHRI)

  • Humanoid robot (ref. 1-5, 2-3, 3-3, 3-5, 3-6, 3-7, 3-8, 3-11, 5-3, 6-4, 6-6) PaperHUMA Project : Web page and Video

Development of a Human-like Upper body Musculoskeletal robot driven by Air actuators (HUMA) : In this research, a human-like upper body musculoskeletal robot (HUMA) with redundant joints and actuators is developed. The robot can change its passive dynamics just by changing the connection of air actuators, i.e., changing the constraint of joints. HUMA can realize some open-loop motions by it.

A Study on Response Adjustable Mechanisms for Various Physical Interaction : Recently, robots are expected to support actions performed in a real-life environment in our daily lives. However, robots encounter several interferences while performing physical interactions, such as shaking hands, hugging, and holding various objects. Therefore, it is difficult for the robots to perform such actions flexibly owing to the unexpected noises associated with these actions. Humans, in contrast, can cope with various disturbances thanks to the property can change the passive dynamics depending on the situation and task. In our study, a human-like musculoskeletal robot (HUMA) comprising redundant joints and actuators is developed.

The robot can change its passive dynamics by simply changing the mutual interconnection of air actuators (Actuator Network System (ANS) : ANS can generate various responses of the whole robot body by switching the connections between cylinders using valves). We expect this idea allows the robot to cope with various disturbances.

  • Joint mechanism (ref. 1-4, 3-2, 4-1, 6-1) PaperDouble joint mechanism : Video

Development of a large moving range shoulder joint for a humanoid robot : This joint mechanism is composed of two ball joints laying back to back and the range of motion is larger than that of a usual ball joint. Since the joint is driven by the mutually inter-connected air cylinders, the control signal can be operated equally with a normal ball joint shoulder. The prototype of the joint with 6 air cylinders and its kinematic model were developed to confirm its range of motion. We also achieved an overhand throwing motion with a robotic arm using the proposed shoulder mechanism thanks to the large moving range.

  • Control method with non-parametric regression models (ref. 1-1, 1-2, 2-1, 2-2) PaperAdaptive pyhisical interaction system with GPR : Video

Estimation of physical interaction between a musculoskeletal robot and its surroundings : Recently, robots are expected to support our daily lives in real environments. In such environments, however, there are a lot of obstacles and the motion of the robot is affected by them.

In this research, we develop a musculoskeletal robotic arm and a system identification method for coping with external forces while learning the dynamics of complicated situations, based on Gaussian process regression (GPR). The musculoskeletal robot has the ability to cope with external forces by utilizing a bio-inspired mechanism. GPR is an easy-to-implement method, but can handle complicated prediction tasks. The experimental results show that the behavior of the robot while interacting with its surroundings can be predicted by our method.

  • Bio-inspired robot (ref. 1-3, 2-4, 2-5, 3-1, 3-4, 3-13, 5-1, 6-2, 6-3, 6-5, 6-7, 6-10, 6-11, 6-12) PaperStingray Project : Web page and Video

Development of a underwater soft robot based on morphological features of ray : Underwater tasks are diversified and articulated. The environment in which they must be accomplished is often unconstrained and unpredictable. Operating AUVs assuring safety of the robot and of its surroundings is therefore very difficult.

On the other hand, many fishes are able to easily move in the same environments. A crucial factor for this capability is their body, which consists primarily of elastic and soft structures that enable both complex movement and adaptation to the environment. Among the most efficient swimmers we find rays, which show abilities like high speed turning and omnidirectional swimming. In our study, we propose an underwater soft robot based on the morphological features of rays. We mimic their skeletal structure and the compliance of their fins. This property provides an adaptive deformation that allows our robot to swim smoothly and safely.

Rays are very efficient swimmers. Their major swimming modes are “mobuliform” , which occurs as the pectoral fins flap up and down, and “rajiform”, defined as having one or more waves present on the fin at a time, which can create great maneuverability and various movements.

<Bonus material> Is the stingray-like robot walkable?: Can we use the developed stingray-like robot as a walking mechanism? We verified whether walking is possible by changing the skeleton arrangement of the robot. Locomotions ware generated by handcrafted control signals (there is no relationship with the locomotion under the water). As a result of the experiment, it was confirmed that it was movable if walking with sliding feet. However, it was not practical and efficient walking was difficult.

  • life-like robot (ref.) → Artificial life project in preparation
  • Life care robot (ref. 7-3, 7-4) → Sign robotics project : Web pages and Video (関連記事:URL, URL

Development of a watching robot system using only highly anonymous information: Communication with families living far away is often forgotten. Mimamoroid provides "peace of mind" to families living separately. Mimamoroid is used in pairs. Families living separately own each one. By synchronizing the state of each robot (movement and LED light) in real time, it gives you a sense of security that you are "connected" or "nearby" to a distant family. Mimamoroid realizes new communication style with robots.

The watching robot that does not monitor it is "Mimamoroid". There is no camera in Mimamoroid. Mimamoroid has odor, noise, temperature sensor and so on. By analyzing sensor information with high anonymity, we will inform you of reliable "safety" information. We do not communicate much information. We will communicate only the information of "the safety of each other" that we would like to know the most.

Human Robot Interaction (HRI)

  • Group communication (ref. 2-7, 3-9, 3-10, 3-12, 3-14, 5-2, 5-4) Paper

Fluid mechanics

Study on mutual interference of flows caused by multiple objects: In urban high-rise buildings, a strong wind including a gust of wind called the building wind occurs. It destroys the wind environment on the ground and it becomes a social problem. This is due to mutual interference that occurs when a fluid moves through multiple objects. However, research results on mutual interference are few at present. In this research, mutual interference was investigated by performing flow visualization experiment and numerical analysis.

Robots

  1. HUMA vol.2 (2015-).
  2. HUMA vol.1 (2014-2015).
  3. Musculoskeletal robot (2013-2014).
  4. Stingray robot (2014-2015).

Publications

  • Journal
  1. 【1-1】 Kenji Urai, Yuya Okadome, Yoshihiro Nakata, Yutaka Nakamura and Hiroshi Ishiguro. "Estimation of Physical Interaction between a Musculoskeletal Robot and Its Surroundings", Journal of Artificial Life and Robotics, Volume 19, Issue 2, pp 193-200, 2014. DOI: 10.1007/s10015-014-0148-y. (Article: URL , Abstract, BibTeX)
  2. 【1-2】 Yuya Okadome, Kenji Urai, Yutaka Nakamura, Tetsuya Yomo, and Hiroshi Ishiguro. "Adaptive LSH based on the particle swarm method with the attractor selection model for fast approximation of Gaussian process regression", Journal of Artificial Life and Robotics, Volume 19, Issue 3, pp. 220-226, 2014. DOI: 10.1007/s10015-014-0161-1.(Article: URL, Abstract, BibTeX)
  3. 【1-3】 Kenji Urai, Risa Sawada, Natsuki Hiasa, Masashi Yokota and Fabio DallaLibera. "Design and Control of a Ray mimicking Soft Robot based on Morphological Features for Adaptive Deformation", Journal of Artificial Life and Robotics, Volume 20, Issue 3, pp 237-243, 2015. DOI: 10.1007/s10015-015-0216-y. (Article: URL , Abstract, BibTeX)
  4. 【1-4】 Kenji Urai, Yoshihiro Nakata, Yutaka Nakamura and Hiroshi Ishiguro. "Development of a large moving range shoulder joint for a humanoid robot -A double joint mechanism driven by mutually inter-connected air cylinders-", Journal of the Robotics Society of Japan, Vol. 34, No. 9, pp. 623-630, 2016. DOI: 10.7210/jrsj.34.623. (Article: URL , Abstract, BibTeX) (in Japanese) (ref: URL)
  5. 【1-5】 Kenji Urai, Yoshihiro Nakata, Yutaka Nakamura and Hiroshi Ishiguro. "An Application of Adjustable Response Mechanism to the Musculoskeletal Robot", Transactions of the Japan Society of Mechanical Engineers, Vol.83, No.845, 2017. DOI:10.1299/transjsme.16-00247. (Article: URL , Abstract, BibTeX) (in Japanese)
  • International Conference
  1. 【2-1】 ○Kenji Urai, Yuya Okadome, Yoshihiro Nakata, Yutaka Nakamura and Hiroshi Ishiguro. "Estimation of Physical Interaction between a Musculoskeletal Robot and Its Surroundings", International symposium on artificial life and robotics (AROB) , pp. 391-396,Beppu, Japan, January 2014.
  2. 【2-2】 ○Yuya Okadome, Kenji Urai, Yutaka Nakamura, Tetsuya Yomo, and Hiroshi Ishiguro. "Adaptive LSH based on the particle swarm method with the attractor selection model for fast approximation of Gaussian process regression", International symposium on artificial life and robotics (AROB) , pp. 221-226, Beppu, Japan, January 2014 (11/2014 19th International Symposium on Artificial Life and Robotics Student Paper Award).
  3. 【2-3】 ○Yuya Okadome, Yutaka Nakamura, Kenji Urai, Yoshihiro Nakata and Hiroshi Ishiguro. "Confidence-based roadmap using Gaussian process regression for a robot control", IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 661-666, Chicago, USA, September 2014. (acceptance rate: 47%) (Abstract, BibTeX)
  4. 【2-4】 ○Kenji Urai, Risa Sawada, Natsuki Hiasa, Masashi Yokota and Yutaka Nakamura. "Development of a Ray-like Robot as a Next Generation Bio-inspired Autonomous Underwater Vehicle", The 6th International Symposium on Aero Aqua Bio-mechanisms(ISABMEC), Proceedings of the Sixth International Symposium on Aero Aqua Bio-mechanisms ISABMEC 2014 pp. 171-175, Honolulu, USA, November 2014. (Abstract, BibTeX)
  5. 【2-5】 ○Kenji Urai, Risa Sawada, Natsuki Hiasa, Masashi Yokota and Fabio DallaLibera. "Design and Control of a Ray-mimicking Soft Robot based on Morphological Features for Adaptive Deformation", International symposium on artificial life and robotics (AROB), pp. 107-111, Beppu, Japan, January 2015. (Abstract, BibTeX)
  6. 【2-6】 ○Yuya Okadome, Yutaka Nakamura, Kenji Urai, Yoshihiro Nakata, and Hiroshi Ishiguro, "HUMA: A Human-like Musculoskeletal Robot Platform for Physical Interaction Studies", IEEE-RAS International Conference on Humanoid Robots (Humanoids 2015), pp.676-683, Seoul, Korea, November, 2015.(Abstract, BibTeX)
  7. 【2-7】Tatsuya Nakamura, Tomu Tominaga, Miki Watanabe, Nattapong Thammasan, Kenji Urai, Yutaka Nakamura, Kazuhumi Hosoda, Takahiro Hara, and Yoshinori Hijikata, "Investigation on Dynamics of Group Decision Making with Collaborative Web Search," Proceedings of 2017 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Leipniz, German, August 2017. (Acceptance rate: 66.3%) (Abstract, BibTeX)
  • Domestic Conference
  1. 【3-1】 ○浦井健次, 澤田莉沙, 日浅夏希, 横田将志. “エイの筋骨格構造を模した水中ロボットの開発”, 第25回OACISシンポジウム, HWIP-2, 大阪, 2013年11月.
  2. 【3-2】 〇Kenji Urai, Yoshihiro Nakata, Yutaka Nakamura and Hiroshi Ishiguro. "Development of Human-Like Robotic Arm Using Novel Joint Mechanism with Wide Range of Motion Driven by Pneumatic Actuators", Proceedings of the 2014 JSME Conference on Robotics and Mechatronics, 1A2-L08, Toyama, 2014 (in Japanese). (〇浦井健次, 仲田佳弘, 中村泰, 石黒浩. (邦文)"空気圧シリンダ駆動型関節機構を用いた高可動域上肢帯ロボットの開発”, 3A1-D08, 富山, 2014年5月.) (Abstract, BibTeX)
  3. 【3-3】 ○浦井健次, 仲田佳弘, 中村泰, 石黒浩. “物理的に連結された空気圧アクチュエータによる連動動作を利用した高可動域人間模倣上肢帯ロボットHUMAの開発”, 身体性認知科学と実世界応用に関する若手研究会(ECSRA)第12回研究会, P10, 仙台, 2014年8月.
  4. 【3-4】 ○日浅夏希, 浦井健次, 澤田莉沙, 横田将志. “エイの形態を模倣した水中移動機構に関する研究”(英題:A Study of a Underwater Propulsion Mechanism based on Morphological Features of Ray)”, 第27回OACISシンポジウム, HW1, 大阪, 2014年12月.
  5. 【3-5】 〇Kenji Urai, Yoshihiro Nakata, Yutaka Nakamura and Hiroshi Ishiguro. "A Study on Adjustable Response Mechanism for Musculoskeletal Robots -Development of a Human-like Upper body Musculoskeletal robot driven by Air actuators (HUMA)-”, Proceedings of the RSJ/SICE/JSME 20th Robotics Symposia, pp. 178-183, Nagano, 2015. (in Japanese) (〇浦井健次, 仲田佳弘, 中村泰, 石黒浩. (邦文)"筋骨格ロボットのための応答性調節機構に関する研究-空気圧アクチュエータ駆動人型上肢帯ロボットHUMAの開発- ", 第20回ロボティクスシンポジア, 2C1, 長野, 軽井沢, 2015年3月. (No. 15-3 第20回ロボティクスシンポジア講演論文集, pp. 178-183)) (acceptance rate: 79.8%) (Abstract, BibTeX)
  6. 【3-6】 ○岡留友哉, 中村泰, 浦井健次, 仲田佳弘, 石黒浩. “人と同様の可動域を持つ空気圧駆動上肢型ロボットのダイナミクス推定”, ROBOMECH2015, 1P2-C07, 京都, 2015年5月.(Abstract, BibTeX)
  7. 【3-7】 ○浦井健次. “空気圧シリンダの物理的連結による筋骨格ロボットのための応答性調節機構の提案”, 身体性認知科学と実世界応用に関する若手研究会(ECSRA)第13回研究会, 東京, 2015年8月.
  8. 【3-8】 ○浦井健次, 仲田佳弘, 中村泰, 石黒浩. “(邦文)多様な接触動作を実現する筋骨格ロボットに関する研究”(英文)A Study on Musculoskeletal Robot for Various Physical Interaction, 計測自動制御学会 第21回創発システム・シンポジウム, P16, 長野, 2015年8月.
  9. 【3-9】 ○中村達哉, 渡辺美紀, THAMMASAN NATTAPONG, ○浦井健次, ○冨永登夢. “グループ意思決定を支援するリーダー型人工エージェントシステムの構築”, 第29回OACISシンポジウム, HW1, 大阪, 2015年11月.
  10. 【3-10】 〇中村 達哉,渡辺 美紀,Nattapong Thammasan,浦井 健次,冨永 登夢,中村 泰,細田 一史,原 隆浩. "協調Web検索におけるグループ意思決定ダイナミクスの調査", 第8回データ工学と情報マネジメントに関するフォーラム(第14回日本データベース学会年次大会)(DEIM2016), 4B, 福岡, 2016年3月. (PDF
  11. 【3-11】 〇橋詰拓馬, 浦井健次, 仲田佳弘, 中村泰, 石黒浩. "人型上肢筋骨格ロボット HUMA を用いた外力に対する応答性調整の検討-アクチュエータネットワークの経路切替えによるエンドエフェクタの外力に対する応答性調整-"(英語タイトル:Response Adjustment of a Human-like Musculoskeletal Robotic Arm ”HUMA” to External Forces -Adjusting Response to External Forces at the End Effector by switching paths of an Actuator Network-), The Robotics and Mechatronics Conference 2016 (ROBOMECH2016), 2A2-05a3(Proceedings of the 2016 JSME Conference on Robotic and Mechatronics), 横浜, 2016年5月.
  12. 【3-12】〇冨永登夢, 中村達哉,Thamassan Nattapong,渡辺美紀,浦井健次,細田一史,中村泰,原隆浩,土方嘉徳 ."協調Web検索における合意形成を促進する情報推薦と説明付けの検討", NLP若手の会 (YANS) 第11回シンポジウム ,P05, 和歌山, 2016年8月
  13. 【3-13】 ○横田将志, 浦井健次, 澤田莉沙. “エイの形態を模倣した水中ロボットの開発”(英題:Development of a Underwater Robot based on Morphological Features of Ray )”, 第31回OACISシンポジウム, 大阪, 2016年12月.
  14. 【3-14】 〇冨永登夢, 中村達哉,Thamassan Nattapong,浦井健次,渡辺美紀."協調Web検索を伴う合意形成を促進するためのパターン抽出と情報推薦及び説明付けに向けた検討", 第31回OACISシンポジウム, 大阪, 2016年12月.
  • Patent
  1. 【4-1】 Patent; Hidenori Kashioka, Yoshihiro Nakata, Kenji Urai, Hideyuki Ryu, Yutaka Nakamura and Hiroshi Ishiguro, "Device Having Movable Part And Autonomous Robot Device Having Movable Part", JP2016-98913A(5.30.2016).(柏岡秀紀, 仲田佳弘, 浦井健次, 笠秀行, 中村泰, 石黒浩. 特願2014-236760, 特開2016-98913, "可動部を有する装置、及び可動部を有する自律型ロボット装置", 公開.(URL))
  2. 【4-2】 仲田佳弘, 浦井健次, 石黒浩, 三田武志. "空圧駆動人間酷似型ロボットの3次元モデル", 大阪大学発明規定著作物等, 2017年4月.
  • Competitive research funds
  1. 【5-1】 浦井健次 (申請代表者), 澤田莉沙, 日浅夏希, 横田将志, 中村泰. エイの形態学的特徴の模倣による操作性の高いRajiform推進型水中移動機構の実現, 独創的な教育活動経費, 採択 (研究期間: 2014年7月 - 2015年3月, 82万).
  2. 【5-2】 中村達哉(申請代表者), 渡辺美紀, THAMMASAN NATTAPONG, 浦井健次, 中村泰. グループ意思決定を支援するリーダー型人工エージェントシステムの構築, 独創的な教育活動経費, 採択 (研究期間: 2015年4月 - 2016年3月, 86万).
  3. 【5-3】 中村泰(研究責任者), 仲田佳弘, 石黒浩, 津留三良, 浦井健次. 生体システムを模倣した多自由度ロボットシステムの調和的な制御, 採択.
  4. 【5-4】 冨永登夢(申請代表者), 中村達哉, THAMMASAN NATTAPONG, 浦井健次, 渡辺美紀, 中村泰. 協調Web検索を伴う意思決定における説得力を持つ情報推薦アルゴリズム, 独創的な教育活動経費, 採択 (研究期間: 2016年4月 - 2017年3月).
  • Others
  1. 【6-1】 ○Kenji Urai, Yoshihiro Nakata , Yutaka Nakamura and Hiroshi Ishiguro. "Development of Human-Like Robotic Arm Using Novel Joint Mechanism with Wide Range of Motion Driven by Pneumatic Actuators", OIST/OU-HWIP Joint Poster Session, 16-A Osaka, Japan, August 2014.
  2. 【6-2】 Kenji Urai, Risa Sawada, ○Natsuki Hiasa, Masashi Yokota and Yutaka Nakamura. "Development of a Rajiform Robot as a Next Generation Bio-inspired Autonomous Underwater Vehicle", OIST/OU-HWIP Joint Poster Session, 18-C, Osaka, Japan, August 2014.
  3. 【6-3】 ○浦井健次, 澤田莉沙, 日浅夏希, 横田将志, 中村泰. "エイの形態学的特徴を模倣した水中ロボットの開発", The 1st HWIP 学生主催 Humanware Café, 大阪, 2014年9月.
  4. 【6-4】 ○Kenji Urai, Yoshihiro Nakata , Yutaka Nakamura and Hiroshi Ishiguro. "Development of a Human-like Upper body Musculoskeletal robot driven by Air actuators Capable of Various Physical Interactions", 大阪大学未来戦略シンポジウム ヒューマンウェアで描く未来 〜リーダー育成への布石〜, (ポスター番号)11,大阪, 2014年11月.
  5. 【6-5】 ○澤田莉沙, 浦井健次, 日浅夏希, 横田将志. "多様な動きを実現したエイ形態模倣ロボットの開発", 大阪大学未来戦略シンポジウム ヒューマンウェアで描く未来 〜リーダー育成への布石〜, (ポスター番号)24, 大阪, 2014年11月.
  6. 【6-6】 ○浦井健次, 仲田佳弘, 中村泰, 石黒浩. "人と安全に関わるロボット研究", “Humanware Seminar” SPRING HW CAMP Poster session, 兵庫, 淡路島, 2015年4月.
  7. 【6-7】 ○浦井健次, 澤田莉沙, 日浅夏希, 横田将志. "エイの形態を模倣した水中ソフトロボットの開発", “Humanware Seminar” SPRING HW CAMP Poster session, 兵庫, 淡路島, 2015年4月.
  8. 【6-8】 ○浦井健次, "心を動かすデザイン(英題:Heart-moving, high-impact design)",“Humanware Seminar” SPRING HW CAMP TED×HW, 兵庫, 淡路島, 2015年4月.(Abstract)
  9. 【6-9】 読売新聞に掲載(人上肢型ロボットHUMA : 2015年6月29日付).(URL)
  10. 【6-10】 ○Kenji Urai, Risa Sawada, Natsuki Hiasa, Masashi Yokota and Yutaka Nakamura. "Development of a Underwater Soft Robot based on Morphological Features of Ray", OIST/OU-HWIP Joint Poster Session, (ポスター番号)12.Osaka, Japan, August 2015.
  11. 【6-11】 AERAに掲載(未来を拓く博士たち. エイロボットの研究について : 2015年10月).(URL)
  12. 【6-12】 ○澤田莉沙, 横田将志, 浦井健次, “Development of a Underwater Soft Robot based on Morphological Features of Ray”, Humanware International Symposium 2017, 大阪, 2017年1月.(URL

Membership

  1. 独立行政法人情報通信研究機構脳情報通信融合研究センター協力研究員, April 2014 - April 2018.
  2. ERATO ISHIGURO Symbiotic Human-Robot Interaction Project, 自律型ロボット研究グループ 研究補助員. July 2014 -. (URL)
  3. ECSRA ( Embodiment Cognitive Science and Real world Application ) 委員(URL), August 2014 - .
  4. Member of The Robotics Society of Japan (RSJ, 日本ロボット学会), 学生会員, September 2014 - .
  5. Member of the Japan Society of Mechanical Engineers (JSME, 日本機械学会), 正員, April 2015 -.
  6. ECSRA ( Embodiment Cognitive Science and Real world Application ) 副委員長(URL), June 2016 - June 2017.

Competition

  1. 【7-1】 Techno-Ocean 2010, Aqua Robot Competition, アクアバイオ部門, 2位 / 5チーム, 神戸市立ポートアイランドスポーツセンター, 2010年10月.
  2. 【7-2】博士課程教育リーディングプログラムフォーラム2013 Next Visionary 学生フォーラム. 本大会出場・一次審査通過.(URL)
  3. 【7-3】 ROBOT HACKATHON, TEAM MAMORU(代表者:浦井健次, 開発メンバ: 濱田浩嗣(RIDE DESIGN), 伏下晋 (NAIST), 光﨑将人 (NAIST)), "次世代ネットワーク型見守りロボ-"みまもろいど"の提案-", 一次審査:2位/12チーム:ヴイストン賞受賞(上位6チーム予選通過), 最終審査:2/6チーム:iRooBO賞受賞, NAIST(一次審査), 大阪イノベーションハブ(二次審査), 2015年7月. (URL)
  4. 【7-4】第4回国際イノベーション会議Hack Osaka 2016, 次世代ネットワーク型見守りロボット"みまもろいど"展示, 大阪, 2016年2月.(PDF

Professional Experience

  1. インターンシップ, 出光興産株式会社 愛知製油所 機械課計装係, 2009年7月-8月.
  2. Teaching Assistant(ジュニア・ティーチング・アシスタント), 大阪大学基礎工学部, 知能システム学実験C, 2015年4月-9月.
  3. インターンシップ, 株式会社エーラボ(A-Lab CO., LTD.), 開発製作部(アンドロイド設計), 2016年2月-3月.
  4. Teaching Assistant(ジュニア・ティーチング・アシスタント), 大阪大学基礎工学部, 知能システム学実験C, 2016年4月-9月.

Education

  • April 2013-
    • Osaka University, Graduate School of Engineering Science, Dep. of Systems Innovation, Osaka (Japan)
      • Adviser: Professor Hiroshi Ishiguro (Lab webpage URL)
      • Master's thesis: 外力に対する可変応答機構を有する人型ロボットの研究 (報告者:浦井健次, 指導教官:石黒浩), 2015年2月. (Abstract)
    • 大阪大学博士課程教育リーディングプログラム ヒューマンウェアイノベーション博士課程プログラム (Osaka University Humanware Innovation Program). (April 2013- ) (PDF)(URL)
      • 学生革新企画
        • 横田将志(企画代表者), 垣塚太志, 浦井健次. 出張・西岡塾. 大阪. 2014年3月. (記事:URL)
        • 澤田莉沙(企画代表者), 横田将志, 浦井健次, 垣塚太志, 冨永登夢. ビジネスモデル創成ワークショップ. 大阪. 2014年10月. (記事:URL)(フライヤー:PDF
    • December 9-12th, 2014
      • The International Myorobotics Winter School and Workshop on “Future of Robotics Based on Biological Principles”,The Myorobotics project is funded from the Europiean Union Seventh Freamwork Programme (FP7/2007-2013) under grant agreement n° 288219, Biologically Inspired Robotics Lab at the University of Cambridge, UK, December 2014.(URL)
  • April 2011-March 2013
    • Osaka University School of Engineering Science, Osaka (Japan)
      • Graduation thesis: 高速化したガウス過程回帰を用いた実ロボットに対するリアルタイム制御―モデル化困難なシステムの制御に向けて―. (報告者:浦井健次, 指導教官:石黒浩), 2013年3月. (Abstract)
  • April 2006-March 2011
    • Nara national college of technology Department of Control Engineering, Nara (Japan)
      • 電子制御工学科 優秀賞受賞, 2011年3月.
      • 卒業生代表 答辞, 2011年3月.
      • 平成20年度青少年のための科学の祭典奈良大会, 「算数(数学)で遊ぼう」, 出展, 2008年.
      • Graduation thesis: 複数物体によって生じる流れの相互干渉に関する研究. (報告者:浦井健次, 指導教官:福田和廣), 2011年3月. (Abstract)
        • 平成22年度電子制御工学科最優秀研究

Notes

  • Survey of robotics and life
    • 自身の構造や形態を活用し活動するロボット

自身の構造や形態を利用し活動するロボット from Kenji Urai

    • 生命の進化と多様な運動の獲得 ~二関節筋やシナジーを工学的視点で捉える~

生命の進化と多様な運動の獲得 from Kenji Urai

  • Survey of machine learning
    • ガウス過程回帰の概要および導出方法・計算例

Explanation of GPR from Kenji Urai

    • 時系列データ解析のためのLSTM概要

LSTM概要 from Kenji Urai

  • Survey of pHRI (physical Human–Robot Interaction)
    • ロボットの実空間での知覚と認識 ~インタラクティブ・パーセプション~(準備中)
    • 筋骨格ロボットの剛性制御 ~剛性楕円の概要と計算~(準備中)

LaTeX

Designs

  • in preparation