Research interests

  Welcome to my personal website. Here you will find information about me.
  Graduate student (a 3nd year Doctors degree student (age: 27)) (CV2014: PDF(CV2017: PDF)
  ◇ E-mail : urai.kenji[at]
  〇 Research Gate 〇 creww 〇 LinkedIn 

  physical Human Robot Interaction (pHRI) 
  • Humanoid robot  (ref. 1-5, 2-3, 3-3, 3-5, 3-6, 3-7, 3-8, 3-11, 5-3, 6-4, 6-6)                                                                                                  → HUMA Project : Web page and Video 
Development of a Human-like Upper body Musculoskeletal robot driven by Air actuators (HUMA) : In this research, a human-like upper body musculoskeletal robot (HUMA) with redundant joints and actuators is developed. The robot can change its passive dynamics just by changing the connection of air actuators, i.e., changing the constraint of joints. HUMA can realize some open-loop motions by it. 
A Study on Response Adjustable Mechanisms for Various Physical Interaction : Recently, robots are expected to support actions performed in a real-life environment in our daily lives. However, robots encounter several interferences while performing physical interactions, such as shaking hands, hugging, and holding various objects. Therefore, it is difficult for the robots to perform such actions flexibly owing to the unexpected noises associated with these actions. Humans, in contrast, can cope with various disturbances thanks to the property can change the passive dynamics depending on the situation and task. In our study, a human-like musculoskeletal robot (HUMA) comprising redundant joints and actuators is developed. 
The robot can change its passive dynamics by simply changing the mutual interconnection of air actuators (Actuator Network System (ANS) : ANS can generate various responses of the whole robot body by switching the connections between cylinders using valves). We expect this idea allows the robot to cope with various disturbances. 
  • Joint mechanism (ref. 1-4, 3-2, 4-1, 6-1)                                                                                 → Double joint mechanism : Video
Development of a large moving range shoulder joint for a humanoid robot : This joint mechanism is composed of two ball joints laying back to back and the range of motion is larger than that of a usual ball joint. Since the joint is driven by the mutually inter-connected air cylinders, the control signal can be operated equally with a normal ball joint shoulder. The prototype of the joint with 6 air cylinders and its kinematic model were developed to confirm its range of motion. We also achieved an overhand throwing motion with a robotic arm using the proposed shoulder mechanism thanks to the large moving range. 
  • Control method with non-parametric regression models (ref. 1-1, 1-2, 2-1, 2-2)                                                                                                                   → Adaptive pyhisical interaction system with GPR : Video 
Estimation of physical interaction between a musculoskeletal robot and its surroundings : Recently, robots are expected to support our daily lives in real environments. In such environments, however, there are a lot of obstacles and the motion of the robot is affected by them. 

In this research, we develop a musculoskeletal robotic arm and a system identification method for coping with external forces while learning the dynamics of complicated situations, based on Gaussian process regression (GPR). The musculoskeletal robot has the ability to cope with external forces by utilizing a bio-inspired mechanism. GPR is an easy-to-implement method, but can handle complicated prediction tasks. The experimental results show that the behavior of the robot while interacting with its surroundings can be predicted by our method.
  • Bio-inspired robot (ref. 1-3, 2-4, 2-5, 3-1, 3-4, 3-13, 5-1, 6-2, 6-3, 6-5, 6-7, 6-10, 6-11, 6-12)                                                                               → Stingray Project : Web page and Video
Development of a underwater soft robot based on morphological features of ray : Underwater tasks are diversified and articulated. The environment in which they must be accomplished is often unconstrained and unpredictable. Operating AUVs assuring safety of the robot and of its surroundings is therefore very difficult. On the other hand, many fishes are able to easily move in the same environments. A crucial factor for this capability is their body, which consists primarily of elastic and soft structures that enable both complex movement and adaptation to the environment. Among the most efficient swimmers we find rays, which show abilities like high speed turning and omnidirectional swimming. In our study, we propose an underwater soft robot based on the morphological features of rays. We mimic their skeletal structure and the compliance of their fins. This property provides an adaptive deformation that allows our robot to swim smoothly and safely. 

Rays are very efficient swimmers. Their major swimming modes are “mobuliform” , which occurs as the pectoral fins flap up and down, and “rajiform”, defined as having one or more waves present on the fin at a time, which can create great maneuverability and various movements.
  • life-like robot (ref.) → Artificial life project  in preparation
  • Life care robot (ref. 7-3, 7-4)                                                                                                                                                               → Sign robotics project : Web pages and Video (関連記事:URLURL
匿名性の高い情報のみを用いた見守りロボットシステムの開発 : ついつい忘れがちな,離れた家族とのコミュニケーション.「みまもろいど」は,離れて暮らす家族に「安心」を提供します.みまもろいどは,2台1セットで使用します.離れて暮らす家族が1台ずつ所有し,それぞれのロボットの状態(動きやLEDライト)がリアルタイムに同期されることで,離れた家族に「つながっている」「近くにいる」という安心感を与えます.みまもろいどは,ロボットを通じた新たなコミュニケーションを実現します.カメラ非搭載.監視しない見守りロボット「みまもろいど」.みまもろいどは,匂い・人感・騒音・温度センサなどを搭載しており,それら匿名性の高いセンサ情報を組み合わせ,解析することで,信頼性の高い「安否」情報を知らせます.たくさんの情報をやり取りするのではなく,「互いの安否」という,最も知りたい情報だけを通信します. 

  Human Robot Interaction (HRI) 
  • Group communication (ref. 3-9, 3-10, 3-12, 3-14, 5-2, 5-4)   
  Fluid mechanics 
複数物体によって生じる流れの相互干渉に関する研究 : 都会の高層ビル群ではいわゆるビル風と呼ばれる突風を含んだ強風が発生し,地上の穏やかな風環境を破壊し社会問題となっている.これは流体が複数物体中を運動する場合に生じる相互干渉が原因の一つとなっている.しかし,相互干渉に関する研究結果は少ないのが現状である.本研究では,流れの可視化実験と数値解析を行うことで相互干渉について考察した. 

    1. HUMA vol.2 (2015-).
    2. HUMA vol.1 (2014-2015).
    3. Musculoskeletal robot  (2013-2014).
    4. Stingray robot (2014-2015). 
    5. Mimamoroid (2015-). under construction
    6. life-like robot (2015-) . under construction